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Abstract

This paper presents numerical optimization of geometries of axially symmetric ion traps for mass analyzers. Four geometries have been taken
up for investigation: one is the well known cylindrical ion trap (CIT) and three others are new geometries. Two of these newer geometries have
a step in the region of the midplane of the cylindrical ring electrode (SRIT) and the third geometry has a step in its endcap electrodes (SEIT).
The optimization has been carried out around different objective functions composed of the desired weights of higher order multipoles. The
Nelder-Mead simplex method has been used to optimize trap geometries. The multipoles included in the computations are quadrupole, octopole,
dodecapole, hexadecapole, ikosipole and tetraikosipole having weights A,, A4, Ag, Ag, Ajp and Aj,, respectively. Poincaré sections have been
used to understand dynamics of ions in the traps investigated.

For the CIT, it has been shown that by changing the aspect ratio of the trap the harmful effects of negative dodecapole superposition can be
eliminated, although this results in a large positive A4/A, ratio. Improved performance of the optimized CIT is suggested by the ion dynamics
as seen in Poincaré sections close to the stability boundary. With respect to the SRIT, two variants have been investigated. In the first geometry,
A4/A; and Ag/ A, have been optimized and in the second A;/A,, Ag/A, and Ag/A, have been optimized; in both cases, these ratios have been
kept close to their values reported for stretched hyperboloid geometry Paul traps. In doing this, however, it was seen that the weights of still higher
order multipoles not included in the objective function, Ajo/A, and A,/ A,, are high; additionally, Ao/ A, has a negative sign. In spite of this, for
both these configurations, the Poincaré sections predict good performance. In the case of the SEIT, a geometry was obtained for which A;/A; and
Ag/ A, are close to their values in the stretched geometry Paul trap and the higher even multipoles (As/A», A1/ A, and A,/ A,) are all positive and
small in magnitude. The Poincaré sections predict good performance for this configuration too. Finally, direct numerical simulations of coupled
nonlinear axial/radial dynamics also predict good performance for the SEIT, which seems to be the most promising among the geometries studied
here.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction how standard, well known techniques can be used effectively
in designing mass analyzers for high performance applications.
Here, we have demonstrated the use of the technique to optimize

the well known CIT of Wu et al. [1], and two variants of the CIT,

This paper presents numerical optimization of geometries
of axially symmetric rf ion traps for mass analyzers. The

Nelder-Mead simplex method has been used to obtain geom-
etry parameters for the mass analyzers by minimizing objective
functions which incorporate desired weights of multipole super-
position within the field. The motivation of this study is to show
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of which one has a step on the ring electrode and the other has a
step on its endcap electrodes. More generally, the technique can
be used to design any axially symmetric mass analyzer.

The geometry of the cylindrical trap differs from that of the
traditional Paul trap in that the hyperboloid electrodes of the lat-
ter trap are replaced by a cylindrical ring electrode and two planar
end cap electrodes. This simplified geometry was first proposed
by Langmuir et al. [2] for an ion storage device and subsequently
used in mass spectrometry [3—5]. More recently, Cooks and co-
workers have carried out extensive investigations on these mass
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analyzers and have demonstrated their use in both mass selective
boundary ejection and resonance ejection experiments [1,6—10].
The cylindrical ion trap proposed by them, however, has rela-
tively poor resolution and this has limited its use to fieldable
applications.

In the mass spectrometry literature, two approaches have
been used to optimize geometries of mass analyzers. In the
first, which is purely empirical and which is exemplified by
the stretched geometry Paul trap, the serendipitous discovery
that stretching improved mass calibration led to a systematic
search to find the optimum geometry [11]. This resulted in
the now well known 10.8% stretch associated with some Paul
traps which are commercially available. In the second approach,
adopted by Cooks and co-workers [1], numerical computations
of field composition were first carried out on candidate geome-
tries and, after manually identifying a few geometries (using
the rough “—10% compensation” rule), the multi-particle sim-
ulation program ITSIM [12] was used to simulate mass spectra
and empirical verification was carried out to identify the best of
those geometries.

For hyperboloid geometry mass analyzers it is well known
that trap performance is largely determined by its multipole field
composition. In mass selective boundary ejection experiments,
early numerical simulations of Franzen and co-workers [13-16]
showed that positive even multipole fields cause early ejection of
ions and negative even multipoles and odd multipoles of either
sign result in delayed ejection. The analytical study of Sudakov
[17] went further to show that early and delayed ejection occurs
on account of the nature of the potential well associated with
positive octopole, on the one hand, and negative octopole and
hexapole of either sign, on the other.! In the former case, a single
effective potential well exists and the depth and width of this well
decreases as the operating point of an ion approaches the stability
boundary. In the latter case, the existence of a double well in the
unstable region of the Mathieu plot caused delayed ejection. In
resonance ejection experiments [18] too, field inhomogeneities
have been known to effect trap performance [19]. Makarov [20]
and Rajanbabu et al. [21] have investigated and elaborated on
the role of positive octopole superposition in enhancing mass
resolution.

In a recent analytical study reported in Rajanbabu et al. [22]
which incorporates multipoles up to dodecapole, a more detailed
insight has been obtained on the role of field inhomogeneities
on trap performance. The phase portraits obtained from the slow
flow for positive even multipoles show one stable fixed point at
the origin, and two outlying saddles. For slow enough scan rates,
allions of a given mass are confined within the stable region close
to the origin. As the operating point approaches the stability
boundary, the area of the stable region shrinks and the outlying
saddles approach each other until, at an operating point close to
the stability boundary, the stable fixed point is annihilated and
ejection of many ions occurs simultaneously. This results in good
resolution observed in mass spectra. In the case of negative even

! Weights of multipoles are expressed as ratios of the strengths of these mul-
tipoles to the strength of the quadrupole.

multipoles and odd multipoles of either sign, even beyond the
nominal stability boundary the phase portraits display two stable
equilibria away from the origin. The origin is now an unstable
saddle. In traps with these inhomogeneities, ion detection occurs
only when its oscillation amplitude increases beyond the trap
boundary; this does not happen simultaneously for all ions of a
given mass, and poor resolution is obtained.

Although the numerical and analytical studies above were
carried out to understand contributions of specific multipoles,
we can extend them to situations where there are combinations
of multipoles. Based on simulations reported in Rajanbabu et al.
[22], we conclude that good performance can be expected when
the nonlinear trap has predominantly weak higher order positive
even multipoles and poorer performance can be expected in traps
having negative even multipoles and/or odd multipoles of either
sign. In the context of Poincaré sections this would imply that
good performance will be predicted by a single stable fixed point
at the origin and relatively poor performance by multiple stable
fixed points.

Before we present the scope of the paper, we list a few general
ideas that we consider important in the context of optimizing trap
geometries.

1.1. Standpoint of this paper

First, weak nonlinearities in the trapping field can have a sig-
nificant effect on resolution. In particular, weak nonlinearities
of the right kind can significantly enhance resolution. This con-
clusion follows from ample mathematical investigations to be
found in Refs. [13—17] and our own earlier work [21-23]. We
emphasize that the study of nonlinear fields in Paul traps was
initially motivated by attempts to understand the effect of non-
ideal geometries (e.g., holes and truncation); but the conclusion
of theoretical studies that certain nonlinearities can be helpful is
independent of the original motivation (non-ideal geometries).

Second, during normal trap operation, at the end of the cool-
ing period, ions are expected to be somewhere close to the center
of the trap, i.e., their oscillation amplitudes are somewhat small
compared to the trap dimension. Subsequently, as the resonance
or boundary ejection point is approached, the ion motion grows
predominantly in the axial direction. Since we assume small ini-
tial amplitudes and subsequent growth in predominantly axial
motions, we will study the dynamics of axial motions only. Such
axial motions can be fruitfully (and rigorously) studied using
Poincaré sections, which will be our primary evaluation tool for
the optimized geometries we calculate.

Third, having focussed on axial motions alone, we must admit
the possibility of significant radial direction dynamics. We will
study this issue after the fact, using nonlinear simulation of the
axial/radial coupled field equations.

Fourth, any significant departure from the perfect hyper-
boloid geometry, such as use of closed cavity shapes like
cylinders, or the introduction of holes, is likely to produce strong
nonlinearities close to the trap boundary. For example, near cor-
ners and holes, it is not expected that the low-order and weak
nonlinearities we use in our study will do a good job of describ-
ing the ion dynamics. Additionally, close to the endcap holes, the
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ion feels the spatially localized effect of the ion detector. How
the ion detector pulls the ion towards itself is, therefore, a mat-
ter of engineering that lies outside usual theoretical analyses of
ion dynamics in the trap. To see that higher order nonlinearities
are relatively unimportant except close to the endcaps, consider
the discussion in Plass et al. [24] where they say a nonlinear
term of order z>* represents the contribution of holes. Assume
that we are interested, at ejection, in some z = zq (say, the axial
dimension of the trap). When the ion amplitude is smaller, say
z = 0.75z, then the same term in comparison with the linear
termis 0.752!,i.e., more than 400 times smaller. In this way, very
high order nonlinearities are typically important only where our
analysis stops and the ion detector takes over.

Fifth, we emphasize that all results in this paper are based on
theory and simulation; and these in turn are based on simplifying
assumptions as delineated above. Therefore, the final evalua-
tion of the trap geometries found in this paper must be through
experiment. The emphasis of this paper, however, remains on
development and description of a methodology for systemati-
cally optimizing candidate trap geometries which might then be
experimentally probed with greater expectations of success.

Finally, we note that our general optimization goals might
be met by many candidate objective functions. In this we agree
with, e.g., Klahr’s comment from 1958 [25]:

“One of the most difficult aspects of this problem ... is
the choice of an objective function. The difficulty exists not
because it is hard to find an objective function but rather
because it is too easy.”

It is not possible here to select any one objective function as
the best; we will therefore consider a few such functions.

1.2. Scope of the paper

In this paper, we present numerical optimization of geome-
tries of axially symmetric ion trap mass analyzers. We illustrate
the scheme through the optimization of four traps. The first of
these is a cylindrical ion trap (CITO) reported by Wu et al. [1];
the other three are modified-CIT mass analyzers, of which two
have a stepped-cylinder ring electrode while the third has a step
(protrusion) in the endcap electrodes.

All our geometries have top-bottom symmetry, whereby all
odd-order multipoles vanish. In line with the previous subsec-
tion, we will optimize these geometries using objective functions
that, roughly speaking, aim for small and positive values for the
even order multipole superpositions (as these are known to be
beneficial). We consider objective functions which range from
trying to match the known multipole strengths of the familiar
stretched-hyperboloid geometry trap, to others where we seek
small positive values by (a) penalizing all nonzero values and
(b) penalizing negative values more strongly than positive ones.

Starting from the CITO of Wu et al. [1], we obtain, for purely
cylindrical geometries, results that are not fully satisfactory. On
the one hand, Wu et al.’s published geometry has a negative
dodecapole superposition, which we believe compromises per-
formance. On the other hand, the pure cylindrical geometry is
sufficiently constrained (there is only one free parameter, namely

the aspectratio of the cylinder) that removal of the negative dode-
capole leads to a somewhat large positive octopole. We report our
results below for completeness, but move on to stepped cylinder
geometries where better results are obtained. In particular, we
introduce a stepped ring electrode ion trap (SRIT) and a stepped
endcap electrodes ion trap (SEIT).

In this paper, we have included quadrupole, octopole,
dodecapole, hexadecapole, ikosipole and tetraikosipole super-
positions having weights As, A4, Ag, Ag, A1p and Ay,
respectively. The evaluation of trap geometries has been car-
ried out through Poincaré sections generated near the nominal
stability boundary (g, = 0.908), which provides an insight into
trap performance in mass selective boundary ejection experi-
ments. Subsequent numerical simulations of coupled axial and
radial motions have also been conducted.

The rest of the paper is organized as follows. In Section 2, we
describe the methods that have been used to find the charge distri-
bution and multipole coefficients, and to optimize the geometry.
Also described in this section is the resulting equation of axial
ion motion and the method to generate Poincaré sections. Section
3 presents the verification of the computations by comparing our
results with those reported in the mass spectrometry literature.
Section 4 discusses the results of our investigations. Section 5
presents some concluding remarks.

2. Field calculation and optimization

To compute charge distribution on the electrodes and the
potential inside the ion trap for a given geometry, we have
developed a MATLAB library which uses the boundary element
method (BEM). This library can be used to define various axially
symmetric geometries and also to specify the potential on dif-
ferent electrodes. The potential at a given point inside the trap is
found by using the charge distribution on the electrodes. Using
this, the multipole expansion coefficients, A, are calculated
directly and, finally a chosen objective function which incorpo-
rates the desired multipole coefficients is minimized to obtain the
optimized geometry of the trap. In the present study we include
quadrupole, octopole, dodecapole, hexadecapole, ikosipole and
tetraikosipole superpositions corresponding to multipole coef-
ficients A, A4, Ag, As, Ao and Ay, respectively. No odd
multipoles occur in the present computations since we have
assumed top-bottom symmetry in our geometries.

2.1. Charge distribution

In order to compute the charge distribution along the surface
of the electrodes, the electrodes are computationally divided into
N elementary rings. Fig. 1 shows two such rings on an arbitrary
electrode. The ith ring is of width Aw;, has a mean radius r;
and is at a mean axial distance z; from the origin (the center of
the trap), with a charge ¢; assumed to be uniformly distributed
on it. For small ring widths, Aw;, the potential computed at
distances large compared to Aw; from the electrode will be a
good approximation to the true potential, with an error in the
potential proportional to Aw%.
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Fig. 1. Diagram of an arbitrary electrode and two arbitrary elementary rings.

For purposes of computation of the potential at points not
on the ring, the charge is assumed to be concentrated on the
circumference of mean radius r; and at mean height z;. Hence,
for i # j the potential at a point on the jth ring due to the ith
ring is given by [26]

j 2 ..
uij = o K = g pai (1)
€0 n\/(zi - Zj)2 + (ri + rj)2
where
/2 d,B
0 1 —k*sin“ 8
k2 _ 41"il’j

(zi — 2p)* + (ri + 1)

and where € is the permittivity of free space. K(k) is a complete
elliptic integral of the first kind [27]. Because of axial symmetry,
polar angle @ does not appear in Eq. (1).

When i = j, the width of the elementary ring cannot be
ignored (since ignoring the width would lead to a singularity)
and the potential, u; ; can be derived to be

| 16r;
P (1 +ln( )) — (i, D) qi. )
dmeg mr; Aw;

The potential on the jth elementary ring is given by

N

uj=>» gli,j)g j=1tN. 3)
i=1

Since the potentials u ; on the different electrodes are known a
priori, the N linear equations in Eq. (3) can be solved simulta-
neously to get the charges, ¢; (i = 1... N), on the elementary
rings. This charge distribution is used to compute the multipole
coefficients of the field within the trap cavity.

2.2. Multipole coefficients

The potential at a point u(p, 6, ¢) in spherical coordinates, in
an axially symmetric trap, can be expressed in terms of Legendre
polynomials P,. When a potential @ is applied to the central

A 2

Ti
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Pi
0;
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v

Fig. 2. Potential due to a ring at a point on its axis.

electrode with endcaps kept at ground potential, u(p, 6, @) is
given by [28]

u(p,6,$)= &3 A, <L‘;’> P, (cos ) @)
n=0

where A, are the coefficients that are to be found and Ly is a
normalizing length.

To find A,,, we note that the potential at a point on the z-axis
due to a ring as shown in Fig. 2 is given by [26],

PR ST .
ui(z) = 4mopiz<p,> Py (cos 6;) 5)

n=0 !

where ¢; is the charge on the ring, z; is the axial position of the

ring, 6; = arctan(r;/z;) and p; = rl-2 + z?, r; being the radius
of the ring.

Since the electrodes have been divided into N rings, the
potential at a point on the z-axis in the trap can be found by
adding the potential due to each of the N rings and is seen

to be

N 00 n
qi z
u(z) = ; dmeopn E <p> Py(cos ;). (6)

n=0 !

The potential u(z) at a point on the z-axis can also be obtained
from Eq. (4) setting p = z and 8 = 0, and is given by

o Z n
=®>» A — | . 7
u(@) =0y A, ( RN) (7)
n=0
By comparing the coefficients of z” in Egs. (6) and (7) we

obtain

1
Anza

N ) I n
di (N) P, (cos 6)). (8)
— 4meopi \ pi

i=1
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Note that g; is proportional to the applied potential @ and with
@ appearing in the denominator also, A, maybe calculated with
@ setto 1.

In the mass spectrometry literature, the multipole coeffi-
cients are generally computed by a least squares fit [1,29]
to the potential at a number of points in the trap. In con-
trast, our method, which is similar to that used by Beaty
[28], computes the coefficients directly from the charge
distribution.

2.3. Optimization

We have used the Nelder-Mead simplex method [30,31] for
optimization of the trap geometry. This is a direct search method
for finding the local minimum of a function of several variables.
In this method, the function is evaluated at the vertices of a sim-
plex (a triangle in 2D, a tetrahedron in 3D and so on). From an
initial guess of the optimal point, the method iteratively shrinks
the simplex to approach a possibly local minimum of the objec-
tive function. For a given objective function, the point to which
the simplex converges to depends on the initial guess and the
distance between the vertices of the simplex formed from it. In
this work, the objective function is specified in terms of desired
multipole coefficients as discussed later.

2.4. Poincaré sections

As exemplified by Cooks and co-workers, the final test for
a trap lies in fabrication and experiment. However, in this the-
oretical work, we have optimized trap geometries for criteria
involving multipole weights. Whether these specific values of
multipole weights do in fact give good ion dynamics is inves-
tigated here, pending final experimental verification, through
simulations of ion dynamics and Poincaré sections.

The equation of axial motion of an ion in a trap with no
damping is
d’z

o0

Apn_, 4

— + (a; + 2q; cos 21) E —=-7""" =0, 9
2

dr - Ay 2

where 7z = z/Ly is the normalized axial position of the ion,
T = £2t/2, §2 the angular frequency of the applied rf potential;
and a; and g, are given by

0 = 8qAU g = 4qA>V (10)
< mL%,QZ’ ¢ mL%V.Qz’

where g/m is the charge to mass ratio of the ion, U the applied
dc potential and V is the zero-to-peak amplitude of the applied
rf potential. Eq. (9) is a nonlinear Mathieu equation, and a,
and g, are referred to as Mathieu parameters. In mass selective
boundary ejection experiments the dc potential, U, is usually set
to zero and hence a; is 0.

In our study, all odd multipole coefficients are zero because
of assumed top-bottom symmetry. Truncating the sum in Eq. (9)
atn = 12 and setting a; = 0, we have the following equation of

motion

d’z 12 Ay, n

— + 2g, cos 2t E 2=l =0, (neven). an
2 z

dr — A2 2

Eq. (11) is solved numerically using MATLAB to generate
the Poincaré sections. For each of a number of initial conditions
for 7 and dz/dr the evolution of the motion of the ion is strobed
at the period of the parametric forcing (7 units of scaled time 1)
with an initial rf phase of 7 radians. A plot of 7 versus dz/dt is
the Poincaré section for the specified weights of even multipole
superpositions.

3. Verification

To verify our methods of field calculation and optimization,
we have compared our results with data available in the litera-
ture. Three test geometries have been considered, the cylindrical
ion traps as proposed by Kornienko et al. [32] and by Wu et
al. [1] have been used to verify our field computations, and
the stretched geometry Paul trap discussed by Franzen et al.
[33] has been used to check our optimization. It will be shown
that the methods adopted by us provide results that compare
favourably with analytical and numerical results reported in the
mass spectrometry literature.

3.1. Cylindrical ion trap of Kornienko et al.

We first look at cylindrical ion traps with no spacing between
the ring electrode and the endcap electrodes, and with no holes
in the endcaps. Kornienko et al. [32] give analytical expressions
for multipole coefficients for such geometries. Table 1 presents
a comparison of the multipole coefficients obtained analytically
with those computed using BEM for two geometries.

It is seen that the numerically obtained coefficients match
to three or more decimal places, which is acceptable for our
purposes.

Table 1
Comparison of coefficients computed using BEM with those obtained from
analytical expression reported in Ref. [32]

Analytical [32] BEM
ro=1,20=0.9
Ag 0.651037 0.651084
Ay —0.848386 —0.848738
Ay —0.072415 —0.072456
Ag 0.182100 0.182292
Ag —0.003054 —0.003084
ro=1,z0=1
Ag 0.721326 0.721390
Ay —0.710093 —0.710364
Ay —0.131167 —0.131260
Ag 0.120239 0.120359
Ag 0.023128 0.023159
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Table 2
Comparison of coefficients found using BEM with those reported by Wu et al.
[1] for cylindrical ion traps

Table 3
Comparison of coefficients for a Paul trap with a stretching of 10.8% as reported
in Ref. [33] with those computed using BEM for a stretching of 9.68%

CIT Wu et al. [1] BEM Franzen et al. [33] BEM
Ay Ay Ag Ay Ay Ag Ay —0.894034 —0.907028
Ay —0.014390 —0.014387
CITO 0.736 0.055 —0.131 -0.736 —0.054 0.133 Ae —0.006280 0006611
CIT1 0.714 0.027 —0.162 —-0.719 —0.033 0.156 Ag —0.000830 —0.002280
CIT2 0.646 0.068 -0.130 —0.650 -0.072 0.127 Ao —0.000304 0001256
CIT3 0.622 0.050 —0.117 —0.625 —0.054 0.115 Ap —0.000034 —0.000737
CIT4 0.692 0.086 —0.157 —0.697 —0.093 0.151

3.2. Cylindrical ion trap of Wu et al.

We next consider cylindrical ion traps with spacing between
the ring electrode and the endcaps, with holes in the endcaps and
with the electrodes having some thickness. Table 2 compares the
coefficients for five different configurations of the cylindrical
trap reported by Wu et al. [1] with those found by our method.
Agreement here is to two decimal places. Note, however, that
Wau et al. present numerical (as opposed to analytical) results,
and so not all the variation observed need be from our method
of computing coefficients of multipole expansion. In any case,
agreement seems sufficient for practical purposes.

The inversion in sign of the coefficients under BEM in Table 2
is on account of the multipole expansion used by Wu et al. [1]
being opposite in sign to that used by us. The convention that we
have adopted is consistent with [28] and with the results reported
in Table 1.

3.3. Geometry optimization

To verify our optimization technique as a whole, we have
applied it to optimize the stretching of the endcaps from their
ideal position in a truncated Paul trap. The objective function
for the optimization has been chosen to force the coefficients of
the multipole expansion to their reported values for the stretched
hyperboloid geometry mass analyzer. The value of A4 is reported
to be —0.01439 [33] for a Paul trap with a stretching of 10.8%
(the optimum stretching found empirically) and it is also known
that A; in these stretched traps is close to unity. In view of this,
an objective function F has been chosen involving only A4 and
A» and has the form

As+p
A

Inclusion of A, in the denominator ensures that we focus only
on those geometries in which Aj is not small. At the minimum
of the objective function, we can expect A4 to have a value of
—p, that is —0.01439.

In our computations, the radius of the ring electrode was
taken as 7.1 mm and the truncation factor approximately? as 3.
Our optimization was carried out with an initial guess for stretch-
ing as O (the ideal geometry). The stretching recommended by

F= ., p=0.01439.

2 The computations were carried out using the exact dimensions of a trap in
use in our laboratory.

our computations was 9.68%, a number remarkably close to
the empirically optimized stretch of 10.8% [11]. The difference
(between 9.68% and 10.8%) is not on account of our optimiza-
tion but due to several other factors. First, the objective function
we have chosen includes only A; and A4. Choice of a different
objective function might lead to a closer match. Second, the dif-
ference in the truncation of the two traps would also lead to a
mismatch in the stretch predicted by our optimization. Finally,
mismatch could also arise because the value of p used by us in
the objective function F has been taken from [33] where it was
computed numerically.

The multipole weights obtained for our 9.68 % stretch is com-
pared with the those of the 10.8% stretch geometry reported in
Ref. [33] in Table 3 and here too the general trend in the two
columns appears to be similar. The marginal difference seen in
the two columns is on account of the different degrees of stretch
(10.8% and 9.68%) in the two geometries.

It is evident from the preceding paragraphs that the methods
we have chosen for field computations and optimization provide
results comparable to those reported in the mass spectrometry
literature. We will next apply these methods to optimize the CIT,
the SRIT and the SEIT. Our motivation for doing this is two
fold. First, we wish to demonstrate how the automated scheme
can be applied to achieve geometry parameters of cylindrical
ion traps for a desired field configuration. Starting with a simple
objective function for the CIT, we systematically impose greater
constraints on the field configuration by modifying the objective
function as we optimize the SRIT and the SEIT geometries. Sec-
ond, through the geometries we investigate, we hope to present
practically achievable geometries for mass spectroscopists to
use. Here the underlying thought has been to keep the design
simple for ease of fabrication (with the possibility of miniatur-
ization) and still ensure that the performance of these analyzers
is similar to the stretched geometry Paul traps.

4. Results and discussion

Before we proceed with our optimization, we digress briefly
to highlight an important point that needs to be considered when
comparing the coefficients of two traps with significantly dif-
ferent geometries. The potential at a point in the ion trap is
expressed by a multipole expansion as in Eq. (4) and the coeffi-
cients of multipole expansion are computed by Eq. (8). In these
equations, Ly is the normalization distance and, because this
choice is arbitrary, a degree of caution needs to be exercised
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Comparison of the coefficients of multipole expansion of stretched geometry Paul trap, the CITO, the CITopt, the SRIT1, the SRIT2 and the SEIT. The normalizing
distance Ly for these coefficients is half the distance between the endcap electrodes, zg

Renormalized stretched

Paul trap CITO ClITopt SRIT1 SRIT2 SEIT
Ay —0.548787 —0.736104 —0.570982 —0.885158 —0.860598 —0.526485
Ay —0.005422 —0.054441 —0.548845 —0.008748 —0.008491 —0.005151
Ag —0.001452 0.133471 —0.001513 —0.002374 —0.002140 —0.001249
Ag —0.000118 —0.020861 0.241221 —0.071361 —0.000239 —0.026487
Aqp —0.000026 —0.019374 0.083049 1.012510 0.481817 —0.008819
A —0.000002 0.016450 —0.099031 —3.347869 —1.478473 —0.000269
As/As 0.009880 0.073958 0.961229 0.009883 0.009867 0.009784
Ag/Ar 0.002647 —0.181320 0.002650 0.002681 0.002486 —0.002372
Ag/As 0.000215 0.028339 —0.422467 0.080619 0.000278 0.050310
A10/Az 0.000048 0.026319 —0.145450 —1.143874 —0.559863 0.016750
A1n/Az 0.000003 —0.022347 0.173440 3.782225 1.717959 0.000512

when adopting the coefficients of one geometry for another. In
the present study, we have chosen zg, half the distance between
the endcap electrodes, as the normalizing distance for all trap
geometries. This choice may be understood by the fact that in
axially symmetric mass analyzers, under study in this paper, the
motion of the ions along the z-axis is the motion of interest.
Hence, using zo of the respective analyzers as the normalizing
distance for the computation of the multipole coefficients, a jus-
tifiable comparison of the coefficients and the ion dynamics can
be made across different analyzers. In view of this, the coeffi-
cients for the stretched geometry Paul trap reported by Franzen
et al. [33], shown in Table 3, will have to be renormalized with
respect to zqo for the purpose of their adaptation in cylindrical
traps that we have investigated. When this is done, Ly, which
in the original formulation was ry (rg being the radius of the
ring electrode), is now replaced by (1 + 0.108)(1/ V2)ro which
corresponds to zg of the 10.8% stretched trap. These renormal-
ized coefficients are presented in Table 4. Also presented in this
table are the coefficients for the CITO of Wu et al. [1] and for
the different cylindrical trap geometries that we have optimized
in the present study. All these coefficients are presented in the
same table for easy comparison.

We next turn to study the dynamics of ions in a stretched
geometry Paul trap through Poincaré sections. This will guide
us in evaluating the performance of cylindrical traps that are
being investigated. The Poincaré sections in Fig. 3 have been
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obtained from the strobed solutions to the equation of motion
given by Eq. (11) for the stretched trap. Multipole coefficients
up to Ajp (which are shown in Table 4) have been used for
the computations. The plots in Fig. 3 are for g, = 0.907 and
q; = 0.9079, that is when the ions are within the stable region of
the Mathieu plot but close to the stability boundary. The Poincaré
sections reveal a stable center close to the origin and two saddle
nodes on either side. As the ions approach the stability boundary
(i.e., when its g, value increases), the area of the stable central
region shrinks. Allions of a given mass to charge ratio are ejected
simultaneously when the stable center is annihilated. Such a
behaviour has been shown to be associated with good resolution
in the study reported in Ref. [22]. Consequently, our effort in
optimizing the cylindrical traps will be to obtain ion dynamics
which display similar behaviour.

We now return to the optimization of the CIT and three new
stepped geometries. Due to the difference in the shapes of CIT,
the stretched geometry trap and stepped geometry traps, the val-
ues of A, and other multipole expansion coefficients cannot
be expected to be the same in these traps. We will instead use
ratios of the coefficients of higher order multipoles to that of
the quadrupole component (A3) in our present work. Usage of
ratios rather than the values of the multipole coefficients is in
conformity with common convention in discussions related to
contribution of higher order multipoles to ion dynamics (e.g.,
[17,22,20]).

0.01

0.005

dz/dr
o

—0.005| "

-0.01

Fig. 3. Poincaré sections for stretched geometry Paul trap for ¢, equal to (a) 0.907 and (b) 0.9079.
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4.1. CIT optimization

The geometry parameters of CIT of Wu et al. [1] has been
reproduced here in Fig. 4 for easy reference. In the figure the
radius of the trap is rp, the distance between the endcap elec-
trodes is 2zo, the radius of the holes in the endcaps is ry, length
of the cylinder is zy, the gap between the ring and the endcap
electrodes is ds, thickness of the ring electrode is r, and the
thickness of the endcap electrodes is dg. These notations are
identical to those used by Wu et al.

The dynamics associated with the CITO [1] can be seen in the
Poincaré sections which have been obtained using the multipole
coefficients reported in Table 4 for the CITO.

The plots in Fig. Sa—e present the Poincaré plots for ¢, values
0.898, 0.9, 0.906, 0.908 and 0.912, respectively. It can be seen
that for g, = 0.898, there is only one stable center, at the origin.
At g; = 0.9, we see a stable center at the origin, two saddle
nodes on either side and two more stable centers further away.
For higher values of g, we see that the central stable region
shrinks just as in the case of the stretched geometry Paul trap

0.05 £ 5 .
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| | doy
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Fig.4. Geometry of the cylindrical ion trap mass analyzer indicating the different
geometry parameters.
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Fig. 5. Poincaré sections for the CITO for different values of g, equal to (a) 0.898, (b) 0.9, (c) 0.906, (d) 0.908 and (e) 0.912.
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Fig. 6. Poincaré sections for the CITopt for different values of ¢, (a) 0.896 and (b) 0.902.

and eventually only a saddle is left at the origin. However, we
see that the stable centers away from the origin remain intact.

The reason for the relatively poor resolution associated with
the CITO is the negative dodecapole ratio, Ag/A2, which inci-
dentally also has the largest magnitude among the first few higher
order multipoles. The contribution of dodecapole superposition
can be seen in the outlying centers in the Poincaré plots. The
stable region close to the origin is on account of the presence of
the positive even multipoles.

Recognizing that Ag/A> has to be positive for improving
the resolution of the CITO, we have optimized the CIT geom-
etry with this restriction. We have carried out a one parameter
optimization involving only zy, half the cylinder length, and all
the other parameters have been kept fixed to their values in the
CITO. This was done with a view of easy retrofitting of a cylin-
der with a new dimension on an existing mechanical assembly.
The objective function, F1, used for the optimization is

—c2f, c2=0.002647.

A
F = ‘6
Ap

F1 ensures that Ag/A» is positive and has a value close to ¢,
the value of Ag/A> in the stretched Paul trap. Starting with
appropriate initial conditions, A4/A»> can also be ensured to be
positive.

The optimized multipole coefficients are presented in Table 4
under the column CITopt. It can be seen that Ag/A> in the
optimized geometry has a value of 0.002650, which is close to
our desired value, although the value of A4/A7 is considerably
higher at 0.961229, compared to 0.073958 in the CITO. Also
seen in the table are the ratios Ag/Az, A19/A2 which are con-
siderably higher than their values in the CITO, with these ratios
appearing with a negative sign. The value of F7 at the optimum
is 0.000003.

In order to check the ion dynamics within the CITopt, we
plotted the Poincaré sections using Eq. (11) with the weights of
multipole field reported in Table 4. Fig. 6 presents these Poincaré
sections for g, corresponding to 0.896 and 0.902, close to the
stability boundary of the Mathieu stability plot. It is evident
from these plots that the negative contribution of Ag/A> and
A10/A> is adequately compensated for by the strong influence of
A4/ Aj since the Poincaré sections reveal only one stable region
close to the origin with no hint of outlying stable centers as was
observed for the CITO in Fig. 5. Based on these observations,

Table 5
Comparison of geometry parameters of the optimized geometry, the CITopt,
with the CITO

ro 20 Zb ds T dg h 20/70
ClITopt 5.0 7.7743 6.1743 1.6 4.5 0.3 0.5 1.5549
CITO 5.0 5.0 3.4 1.6 4.5 0.3 0.5 1.0

All the geometry parameters are as described in Ref. [1].

it appears that the performance of the CITopt may be better
than that of the CITO. Note, however, that A4/A> is unusually
large (A4/A> = 0.961 when normalized with respect to zg, and
A4/Ay = 0.398 when normalized with respect to rg) and such
large numbers have not been reported for other mass analyzers
in the mass spectrometry literature. Consequently, the CITopt
will need to be further investigated before this geometry can be
accepted (see also the concluding paragraphs of Section 4.4).

The geometry parameters for the CITopt is presented in
Table 5, which also includes the parameters for the CITO reported
in Ref. [1] for the purpose of comparison.

Our attempt to further optimize CIT with the restriction
that both A4/A> and Ag/A; should have values similar to
the stretched geometry Paul trap did not yield useful results.
Based on our understanding that this was due to having too
few geometry parameters in the design, we took up for inves-
tigation two new geometries, one with a step at the center
of the cylinder ring electrode and the other with a step on
the endcap electrode. These new geometries give us the req-
uisite degrees of freedom in the geometry to achieve field
configurations similar to that in the stretched geometry Paul
trap.

4.2. SRIT

Fig. 7 presents the geometry parameters of the stepped ring
electrode ion trap (SRIT) that we have taken up for study. r¢
and r correspond to the two radii associated with the cylinder;
ze and ry, correspond to the thicknesses of the endcap and ring
electrodes, respectively; ry, is the radius of the hole at the center
of the endcap electrodes; a, b and zo correspond to the half-
height of the step, half-height of the cylinder, and the distance
from the center of the trap to the endcap electrodes, respectively.
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Fig. 7. Geometry of the stepped cylinder ion trap mass analyzer indicating the
different geometrical parameters.

In our optimization process, the parameters ry, r, and z. are
kept constant because it was observed in our preliminary studies
that the thickness of the electrodes (ry, z.) did not have a sig-
nificant effect on the multipole coefficients. Further, the radius
of the endcap holes (1) is held constant because we wish to
optimize the geometry for a given hole size. With this, only 7y,
a, b and z¢ are optimized in our present study. All the dimen-
sions have been normalized with respect to rg, the smaller radius
associated with the cylinder.
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4.2.1. SRITI and SRIT2
We have carried out the optimization using two separate
objective functions, F> and F3, which are

o EC R ’A6 — |, e1 = 0.009880,
Ay Ay

¢2 = 0.002647

and

P Lo U LR ’AS “esl, er = 0.009880,
Ay Ay Ay

c2 = 0.002647, c¢3 = 0.000215

In the first objective function, F, two higher order multi-
poles, A4 and Ag (in addition to the quadrupole component A;)
have been used in the optimization while in the second, F3, an
additional multipole weight Ag has been included in the opti-
mization. The motivation was to explore the differences in the
geometries recommended by these two objective functions.

We call the optimized geometry that is obtained using the
objective function F, as the SRIT1 and that obtained using F3
as the SRIT2. At the end of the optimization, the resulting geom-
etry is expected to have A4/ A, and Ag/ A close to 0.009880 and
0.002647, respectively, for the SRIT1 and A4/A;, Ag/ A and
Ag/A; to be close to 0.009880, 0.002647 and 0.000215, respec-
tively, for the SRIT2. These multipole coefficients correspond to
the respective values for the stretched geometry Paul trap seen in
Table 4. The values of the multipole coefficients for the SRIT1
and the SRIT2, obtained consequent to our optimization, are
presented in Table 4.
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Fig. 8. Poincaré sections for the SRIT1 for g, equal to (a) 0.907 and (b) 0.9079.
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Fig. 9. Poincaré sections for the SRIT?2 for ¢, equal to (a) 0.907 and (b) 0.9079.
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Table 6
Geometry parameters of the optimized geometries the SRIT1 and the SRIT2
o T a b h b Ze ro/r a/b

SRIT1 1.0 1.3966 0.2803 1.1445 1.6233 0.1 0.5 0.1 0.7160 0.2449
SRIT2 1.0 1.3919 0.2737 1.2144 1.5049 0.1 0.5 0.1 0.7184 0.2254

As expected, the SRIT1 forces A4/A; and Ag/A> to the val- _:h<_
ues close to those reported for the stretched Paul trap and the i
value of F; at the optimum is 0.000038. However, the weights of E t I ¢ Ze
higher order multipoles are considerably larger and A9/ A3 even i h
has a negative sign. Poincaré sections for the SRIT1, presented t Zg
in Fig. 8a and b for g, values of 0.907 and 0.9079, respectively, i
however suggest that these higher order multipoles do not cause t Zo
any deterioration in performance and that the deleterious effect N I B e e
of Ajo/A> is compensated for by the other even multipoles. ———

The weights of the multipoles for the SRIT2 are also pre- o rp
sented in Table 4 and the value of F3 at the optimum is 0.000236. < >

Here too, as desired, the ratios of A4/A>, Ag/Az and Ag/A2
have been forced to the values close to that seen in the stretched
geometry Paul trap. Further, Aj9/A2 and Aj/A; have lower
weights compared to the SRIT1, although Ajg/A> is still neg-
ative. The Poincaré sections for ¢, values of 0.907 and 0.9079
shown in Fig. 9a and b, respectively, display a similar structure
as in the SRIT1 and they suggest that the SRIT2 too will display
good performance. We will investigate the coupled radial/axial
dynamics of both the SRIT1 and the SRIT2 below.

The geometry parameters of the SRIT1 and the SRIT2 are
presented in Table 6. As mentioned earlier, all the dimensions are
normalized with respect to the parameter r( and the parameters
that have been optimized are ry, a, b and zg. The parameters ry,
rp and z. have been fixed at the values shown in Table 6. Also
included in the table are ro/r; and a/b, which correspond to
the ratio of the two radii associated with the cylinder and the
ratio of half-height of the step to half-height of the cylinder. The
aspect ratios (zo/rop) are 1.6233 and 1.5049 for the SRIT1 and
the SRIT2, respectively.

In the SRIT1 and the SRIT?2 the higher multipole weights,
not being included in the objective functions, are large as seen in
Table 4. Though the Poincaré sections (which include all even
multipoles up to Ajp) for the SRIT1 and the SRIT2 suggest
good performance, it is interesting to seek a geometry where the
growth in non-minimized multipole strengths is slower. Hence,
we have investigated yet another trap geometry, in which there
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Fig. 10. Geometry of the stepped endcap cylindrical ion trap mass analyzer
indicating the different geometry parameters.

is a step in the endcap electrode instead of the central ring
electrode, the SEIT.

4.3. SEIT

The SEIT geometry is presented in Fig. 10. As in the case
of SRIT, the thicknesses of the endcap electrode (z.) and the
central ring electrode (r,), as well as the endcap hole radius,
h, have been held constant. Additionally, the gap between the
central ring electrode and the endcap electrode, zg, has also been
kept constant. The parameters that have been optimized are zp,
t and h, which correspond to the distance of the endcap from
the center of the trap, the thickness of the step and the height
of the step, respectively. All dimensions of the geometry have
been normalized with respect to the radius of the central ring
electrode, rg. In the SRIT1 and the SRIT2, we have seen that
the coefficients not included in the objective functions are high
and that A9/ A> is actually negative. Hence, in optimizing the
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Fig. 11. Poincaré sections for the SEIT for g, equal to (a) 0.907 and (b) 0.9079.
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Table 7
Geometry parameters of the SEIT geometry

ro 20 t h h Ty Ze Zg
SEIT 1.0 0.7392 0.0674 0.1176 0.1 0.5 0.2 0.2

SEIT geometry, we have attempted to get A4/A, and Ag/A3 to
match the stretched Paul trap while keeping the higher coeffi-
cients small and positive. The objective function that has been
used is

. Ay L Ag
= 7—6‘ 7_6
4 A, 1 A, 2
12 12
A, An\ Ap
=21 —-100y H(--")-=

where c; = 0.009880, c¢» = 0.002647

1 if x>0

and H(x) = {0 if x<0

H(x) in the above equation is the Heaviside function. The first
two terms in F4 are similar to the ones in the earlier objective
functions. The third term is the sum of the absolute values of
the ratios of the higher order multipole coefficients (Ag to A7)
to A,. This term ensures that the magnitudes of these ratios are
small. The fourth term penalizes negative multipole coefficients.
This term forces the optimization toward geometries for which
there are no negative even multipoles or only a few with very
small magnitudes. Note that F4 can only be positive or zero.

The multipole coefficients for the SEIT are presented in
Table 4. The ratios A4/ A and Ag/A> match up to four and three
decimal places, respectively, with those of the stretched Paul
trap. Ag, Ajp and A are smaller than those in the CITopt, the
SRIT1 and the SRIT2 and more importantly, they are positive.
On account of these features, the SEIT has a field distribution
closest to the stretched geometry Paul trap. As expected, the
Poincaré sections for the SEIT in Fig. 11a and b predict good
performance.

The geometry parameters of the SEIT are presented in
Table 7. As mentioned earlier, all the dimensions are normal-
ized with respect to the parameter o and the parameters that
have been optimized are zg, t and h. The parameters ry, 1, Ze
and z, have been fixed to the values shown in Table 7. The aspect
ratio (zo/ro) is 0.7392.

4.4. Stability of radial motion

The focus so far has been on the axial motion of ions, because
in conventional mass spectrometry experiments in rf ion traps,
ion destabilization in the z direction is used to obtain the mass
spectrum of the analyte compound. However, in the context of
the newer traps under discussion in this paper, it is necessary
to probe radial direction motion to ensure that coupling or other
nonlinear effects do not destabilize the ion in the radial direction
prior to their z direction instability.

The numerical simulations we present use the coupled nonlin-
ear Mathieu equation for a single ion for a, = 0. The equations
of motion in the z and r directions (see Appendix A for details
of the derivation) are respectively,

d*z N 2¢ dz
dr2  Qdr

6
A2n

2q, cos 2T
+2¢q; ;2142

d Py, (cos 0
« (20722 Py (cos o)z 4 pn—3 IS D 2\ o)
dcosd

and

d’¢  2cdr

A2n
dr? + 2dr

2A;

6
+ 2g. cos ZTZ
n=1

on—3 AP, (cos ) -

x | 2np*" "2 Py, (cos O)F — p
dcos6

Z) =0, (13)
where cos 8 = Z/p,z = z/Ly is the normalized axial position of
the ion (L y is the normalizing length), 7 = r/L y the normalized
radial position of the ion, p = +/z2 + 72, P, the nth Legendre
polynomial, T = £2¢/2, §2 the angular frequency of the applied
rf potential, ¢ the damping coefficient, and g, is the Mathieu
parameter given by
4qA,V

qz_mL%\,.Qz’ 14)
where in turn g/m is the charge to mass ratio of the ion, V the
zero-to-peak amplitude of the applied rf potential and Ly is
chosen here as half the distance between the endcap electrodes.
Note that it is more common in the literature to use a symbol
qr = —q;/2 for the radial motion equation. However, here the
use of g, in the radial equation is correct because the appropriate
(6-dependent) potential has been used. In Eqgs. (12) and (13)
we have used the viscous drag model of damping proposed by
Goeringer et al. [34],

mp p q [ m+my

= m+mnm2eo

(15)
mmy

where m,, is the mass of the bath gas (helium), @ = 0.22 x
107*°Fm? the polarizability of the bath gas, €y = 8.854 x
1072 F/m the permittivity of free space, Tj, the temperature
(chosen to be 298 K), p the pressure of the bath gas, k the
Boltzmann constant and m is the mass of the ion.

Simulations have been done using MATLAB to follow the
evolution of axial and radial motion of an ion of mass 78 Th.
Starting from g, = 0.6 (forions of 78 Th) ¢, is increased linearly
with time until the ion becomes unstable. The scan used is
49: _ 5 058 x 105, (16)

dr
This corresponds to a scan rate of approximately 180 ws/Th.

In the simulations helium bath gas pressure of 0.1 Pascal has
been used, and the rf frequency has been taken to be 1 MHz
(£2 = 27 x 10%). In all the simulations, ¢. starts at 0.6 and is
varied as per Eq. (16) until the ion becomes unstable.



50 PK. Tallapragada et al. / International Journal of Mass Spectrometry 264 (2007) 38-52

CITO - axial CITO - radial
2
(a) [ (o)
0 & O | ——
-2 -1
0.6 08 0.6 08
4z qz
ClTopt - axial ClTopt - radial
2 1
(©) (@
0 = (O i ———
-2 -1
0.6 08 0.6 0.8
qz gz
SRIT1 - axial SRIT1 - radial
2 1
() ®
3] I O [ —
=D -1
0.6 0.8 0.6 0.8
qz qz
SRIT2 - axial SRIT2 - radial
2
) N[O
0 = O —
-2 -1
0.6 08 0.6 08
qz gz
SEIT - axial SEIT - radial
21 -
0) )
=0 = [ [rmm—e————
-2 -1
0.6 08 0.6 0.8
gz qz

Fig. 12. (a), (c), (e), (g) and (i) show Z trajectories with g, for the CITO, the
CITopt, the SRIT1, the SRIT2 and the SEIT, respectively. (b), (d), (f), (h) and
(j) show 7 trajectories with ¢, for the CITO, the CITopt, the SRIT1, the SRIT2
and the SEIT, respectively.

Fig. 12 shows the time trajectories of Z and 7 for the traps
considered in this paper. Fig. 12a, c, e, g and i shows Z trajec-
tories with scaled time t for the CITO, the CITopt, the SRIT1,
the SRIT2 and the SEIT, respectively. Fig. 12b, d, f, h and j
shows 7 trajectories with scaled time 7 for the CITO, the CITopt,
the SRIT1, the SRIT2 and the SEIT, respectively. The initial
conditions of the ions for all the traps are

_ dz _ dr
z2(00=0.1, —(©0)=0, F70)=0.1, —(0)=0.
dr dr

It can be seen from Fig. 12 that the ion motion in all the cases
is stable in the radial direction and instability only sets in near
the nominal stability boundary.

We mention that, in other simulations, settingz = 7 = 0.2 led
to premature growth in axial and radial motion for the CITopt.

CITO - axial
2 T T
1
0
-1
ol ‘ ) J
0.9 0.905 0.91 0.915
gz

Fig. 13. Axial motion of an ion in CITO prior to ejection. Zoomed portion of
the plot in Fig. 12a.

Further, even setting 7 = 7 = 0.4 for the SEIT gave appropri-
ately bounded axial motions right up to the nominal stability
boundary, reinforcing our view that the SEIT is most likely to
give superior performance among the geometries considered in
this paper.

Finally, in contrast to the SEIT, we now examine the cylin-
drical geometries (the CITO and the CITopt) further. The two
visible jumps in amplitude in Fig. 12¢ with one corresponding
jump visible in Fig. 12d, are most likely due to passage through
internal nonlinear resonances. Note that the CITopt is the most
strongly nonlinear trap among those studied here.

A zoomed portion of Fig. 12a is shown in Fig. 13, where it
is seen that, just prior to ejection, the ion has rapidly modulated
oscillations of amplitude comparable to the trap dimension. Such
dynamics, which is missing in the trap geometries proposed in
this paper, may be compromising the performance in the CITO.

4.5. Design sensitivity

We have studied the design sensitivity of one of the SRIT’s
(SRIT1) and the SEIT by varying each parameter by 0.01 units of
nondimensionalized length from their optimum values. Table 8
shows the changes in the coefficients A>, A4 and Ag for the
SRIT1. Also shown are the resultant changes in the ratios A4/ A»
and Ag/A>. Table 9 shows the relative changes (percentage) in
these coefficients for the SRIT1.

It is seen from Tables 8 and 9, that the coefficients
do not change appreciably from their values at the opti-
mum geometry, except perhaps with changes in a (step
height). Thus if SRIT’s are fabricated for experimental test-

Table 8
Changes in the coefficients with a variation of 0.01 units in the parameters (r1,
a, b, ¢) from their optimized values in the SRIT1

AA> AA4 AAg A(Ag/A2)  A(Ag/A2)
r —0.00520 0.01272 —0.00503 —0.01434 0.00564
a —0.00051 —0.00666 0.02758 0.00751 —0.03114
b 0.00279 —0.00435 —0.00140 0.00496 0.00160
20 —0.00072 —0.00178 —0.00154 0.00201 0.00173
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Table 9
Relative changes (percentage) in the coefficients with an increase of 0.01 units
in the parameters (r1, a, b, ¢) from their optimized values in the SRIT1

%As %Ay %A %(Ag/Az) %(A6/A2)
r 0.587 —145.367 212.118 —145.102 210.295
a 0.058 76.122 —1162.011 76.020 —1161.400
b —0.315 49.731 59.100 50.205 59.602
20 0.081 20.402 64.775 20.304 64.641
Table 10

Changes in the coefficients with a variation of 0.01 units in the parameters (zo,
t, h) from their optimized values in the SEIT

AA; AA4 AAg A(Ag/A2)  A(Ag/A2)
20 —0.00686 —0.00262 0.00210 0.00479 —0.00398
t —0.00220 —0.00164 —0.00053 0.00305 0.00099
h 0.00317 —0.00486 —0.00276 0.00935 0.00529
Table 11

Relative change (percentage) in the coefficients with an increase of 0.01 units
in the parameters (zo, ¢, 1) from their optimized values in the SEIT

%Az %Ay % Ae %(Ag/Az) %(As/A2)
20 1.303 50.943 —168.891 49.001 —168.005
t 0.417 31.760 42.376 31.213 41.784
h —0.602 94.376 221.200 95.553 223.145

ing, the step height must be machined to higher dimensional
accuracy.

Table 10 presents corresponding results for the SEIT. Table 11
shows the relative changes. Both the designs, the SRIT1 and the
SEIT, look reasonable, though the SEIT seems better.

5. Conclusions

In this paper we have presented optimization of geome-
tries of axially symmetric rf ion traps for mass analyzers. The
Nelder-Mead simplex method was used to obtain the geometry
parameters of the mass analyzers by using objective functions
which incorporate desired weights of multipole field coeffi-
cients. Multipole coefficients up to Az have been considered
in our optimization of the CITopt, the SRIT1, the SRIT2 and
the SEIT. Poincaré sections, obtained by numerically integrat-
ing the nonlinear Mathieu equation, have been used to evaluate
trap performance.

A departure that we have made in this paper from conven-
tional usage is in regard to our choice of the scaling length, L.
In our study, we have chosen zo to be the scaling length and
we recomputed multipole coefficients of the stretched geome-
try Paul trap for the purpose of comparison as well as for its
adaptation to the cylindrical geometries. This choice has been
motivated by our primary interest in the z-direction motion.

With a view towards future experimental implementations,
we draw the reader’s attention afresh to Eqgs. (8) and (10). The
computation of A; (see Eq. (8)) implicitly includes the normal-
izing length Ly. Subsequently, the voltage V at the nominal
stability boundary of g, = 0.908 (see Eq. (10)) depends on both

Ay (as reported in our tables) and Ly (used here as half the
distance between the endcaps).

An important question that we have only partially addressed
in this paper is what multipole composition might lead to good
traps. Here, we have assumed that even multipole superpositions
that are both small and positive are desirable. Beyond this crite-
rion and our numerical simulation, however, it seems that there
is an important role to be played by multi-particle simulation
packages such as ITSIM [12], AXSIM [35] and SIMION [36].
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Appendix A. Derivation of equations of motion

Starting with the expression for the potential in Eq. (4), we
derive the equation of motion in the z direction. The equation
for r direction motion can be similarly derived.

The potential at a point u(p, 6, ¢) in spherical coordinates, in
an axially symmetric trap, can be expressed in terms of Legendre
polynomials P,. When a potential @ is applied to the central
electrode with endcaps kept at ground potential, u(p, 6, @) is
given by [28]

u(p.6,6) = Y A, (&) P, (cos 6) (A.1)
n=0

where A, are the multipole coefficients and L y is a normalizing
length.

The z component of the electric field, E,, is —du/dz. Hence,
differentiating Eq. (A.1) with respect to z; and considering only
the even order terms (assuming top-bottom symmetry of the trap,
as has been assumed in this paper) we have:

" P dcosd
X e P>, (cos 0) + p°" Py, (cos 0) (A2)
Z

0z

where P}, (cos6) is the derivative of P»,(cos6) with respect to

cos 6. Noting that cos @ = z/+/z2 +r? and p = /7% + 12, we
get:

du ad 1\
“E = — =& Ay, —
z 9z ZO 2n(LN>

n=

x (2n,02"_2P2n(cos 8)z + p* 3 P}, (cos 9)r2> . (A3)
Using
d?z

mSs =Ea (A4)
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we obtain
d?z > 1\
mor =03 au(g,)

x <2n,o2"*2P2,,(cos 0)z + p** 3 P} (cos Q)rz) ¢ (AS5)

We now make the substitutions @ = U + V cos(£2f), t =
2t/$2 and z = LyZ, where U is the dc potential applied to
the ring electrode, V the amplitude of the rf potential, 2 the
frequency of the 1f potential, t the scaled time and Z is the nor-
malized axial position of the ion. Rearranging the terms, we
obtain

d’z =
2 + (a; + 2q; cos ZI)Z
n=1

Aoy
2A,

dPpP 6
X (an)z”_szn(cos 07 + Z)Z”_32"(COS)72> =0,

dcosf o
(A.6)

where a, and g, are given by
8qAU 49A,V

a, = , = — .
< mL%\,.Q2 a mL%,.Q2

This is the coupled nonlinear Mathieu equation for a single ion in
the axial direction in its general form. In mass selective boundary
ejection experiments the dc potential, U, is usually set to zero
which causes a_, in Eq. (A.6), to vanish. Introducing a viscous
damping term in Eq. (A.6), noting the stretched time scale in
the equation and truncating to n = 6, we get Eq. (12) used in
Section 4.4.
Eq. (13) used in Section 4.4 can be similarly derived.
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